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Abstract 

The origins of and variations in bonding among 

weakly bound diatomics are discussed in terms of the 

virial theorem as applied to Born-Oppenheimer total 

energy curves. These curves are represented by accu-

rate and flexible analytic functions. Expressions are 

given for the relations among the parameters of these 

functions and the electron average kinetic energy, <T(R)>, 

and the total molecular potential energy, <V(R)>. The 

relatively brief distance through which weak bonding 

occurs (as opposed to the relative distances for chemical 

bonding) is discussed, as is the origin of bond saturation 

through a homologous series of weakly bound diatomics. 
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Application of the virial theorem to the total energy 

of a diatomic molecule within the Born-Oppenheimer 

approximation yeilds an instructive and familiar1 

description of the physical origin of bonding bet\veen two 

atoms. If W(R) is the Born-Oppenheimer total energy 

of the atoms as a function of separation, R, then the 

virial theorem relates the average kinetic energy of 

the electronsu <T(R)>, and the average Coulombic potential 

energy of the diatomic, <V(R)>, to W(R) via the relations 

and 

<T(R)> = -W(R)-R dW(R) 
dR 

<V(R)>= 2W(R)+RdW(R) 
dR 

(1) 

(2} 

These three functions are shown in Fig. 1 for the ground 

state of H2 , using the ab initio data of Ko~os and Wolniewicz 2 . 

The distance scale is measured in multiples of the H2 

equilibrium bond length (i.e., the distance, Re, at which 

W(R) is a minimum), and the energy scale is measured in 

multiples of the H2 bond energy (i.e., W(R= oo )-W(Re)). 

Constants have been added to each curve so that each goes to 
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zero as R -+ oo 

As the atoms approach, the potential energy rises 

(electrons are moving away from nuclei) and the kinetic 

energy falls (as delocalization begins}. In the vicinity 

of R/Re=2, this trend reverses~ The kinetic energy increases 

as the electronic wavefunction is localized further, raising 

the momentum, but the potential energy falls, as charge is 

now brought nearer both nuclei* Only at R/R <0.5 does e 

nuclear repulsion cause the potential energy to increase 

and contribute to the total repulsion energy. 

These general features apply to any diatomic in a bound 

state (with the exception1 of purely ionic attractions). 

To construct and interpret <TCR)> and <V(R)>, one needs only 

W(R). It has been shown 3 that W(R) for many weakly bound 

diatomics can be given accurately by the Thakkar analytic 

function 

won 
00 

eo:\2[1+ r en:\n] + WLRe) 
n=2 

(3) 

where :\= 1-(Re/R)p and pis a positive constant. This function 

has been shown to represent the true W(R) ·throughout the bound 

region of the molecule, :i:ncluding the long-range attractive 

tail, in many cases. 
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In Fig. 2, we show W(R) for Ar2 , using Eq. (3), 

as well as the <T(R)> and <V(R)> functions derived from 

't 4 l . These functions are plotted in a reduced coordinate 

system analogous to that used in Fig. 1. All three curves 

are dramatically different in qualitative appearance from 

those for H2 . 

Note that chemical bonding (i.e. H2 ) can be attributed 

to a gradual decrease in <V> throughout a wide portion of 

the total energy well. Weak bonding can be attributed to 

the decrease in electron kinetic energy over the attractive 

tail, but, in the vicinity of R , the roles of <T> and <V> e 

in promoting binding are rapidly reversed. 

The behavior of <T> and <V> at long range is, for Ar
2

, 

a manifestation of the dispersion interaction. Admixing 

excited state character to form the wavefunction descriptive 

of the induced dipole-induced dipole attraction necessarily 

increases <V> and decreases <T>. (Recall that, for an atom, 

W=-<T> < 0.) What this analysis shows rather clearly is the 

persistance of this behavior as R decreases towards R . e 

One may take the position of the maximum in <V> or 

of the minimum in <T> as a lower bound to the inner limit 

of classical long range attraction. Expressions for these 

distances (which are slightly different) can be found from 
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Eq. (1) only by numerical methods, except for the special 

case W(R) = e A2+W(R ). This is a simple Lennard-Jones 
o e 

(p~2p) function. For this case, one finds 

d<T>/dR=O 

and 

d<V>/dR = 0 

1/p 
when R/R =( 2P-l) 

e p-1 

Both of these distances are larger than the location of 

the inflection point in W(R), which occurs at R/R = e 

((2p+l)/(p+l)) 11P. Since p is a property of W(R ) and 
e 

can be calculated3 from derivatives of W(R) at R , from e 

(4) 

(5) 

observed equilibrium spectroscopic constants, or, as shown 

below, from first principles, Eq's (4) and (5) provide 

unambiguous criteria by which one may locate with certainty 

the "end" of long range attraction as R is decreased towards 

R . These relations should be of use in checkin~ the somewhat e 

arbitrary decisions made to locate this point in schemes using 

piecewise analytic representations 5 of W(R). 

Several simple and informative relations pertaining 

to <v(R )> and <T(R )> can be derived from Eq's (1)-(3). 
e e 

The well-known fact that the decrease in <v> at Re is twice 

the increase in <T> at R is, of course, general, and does not e 

depend on the functional form of W(R). Using the following 
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definitions for derivations of W and for p: 

and 

R , 
e 

R , e 

one finds 

(d_<V>) = 
\dR · R 

e 

and 

Also, for Eq. (3), 

2 2 
ke = 2p e0 (l+~en)/Re. 

It is helpful to consider these expressions in reduced 

coordinates so that the relative variations in <T> and <V> 
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across the bound portion of W(R) can be compared. Thus, 

when distances are scaled by Re and energies by De' 

as in the figures, the behavior of <T> and <V> at R/R =1 e 
2 can be related directly top, viz., -d<T>/dR ~ p, 

2 2 3 
d <T>/dR ~ p , etc. 

For chemically bound species, p's are found, from 

. d 6 spectroscoplc ata, to lie in the range 0.6 to 3.0. 

In contrast, p's for weakly bound species 3 are found 

throughout the range 3.1 to >6. Thus, weak bonds may be 

characterized in the vicinity of R/Re=l as having <T> 

(<V>) increase (decrease) at relatively much greater rates 

than do chemically bound species in general. It is 

a somewhat surprising outcome of this analysis that weak 

bonding is a relatively more localized interaction than 

chemical bonding~ 

The reason Eq. (3), the Thakkar function, works as 

well as it does (or, equivalently, fails rather miserably 

for strongly bound diatomics) appears to involve two 

factors. The first is the persistance of long range 

behavior to R values close to Re (see Fig. 2) in many 

' 8 
weakly bound molecules ~ allowing Eq. (3) to reproduce 

the long range tail with a power series lead by a term 

in R-p with p close to the anticipated integral value. 
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The second is the physical similarity of repulsive 

interactions for weakly bound molecules: the Pauli 

repulsion of two (usually) spherical atoms. Binding, 

as noted above, is relatively less localized in covalent, 

ionic, or other strong interactions, and the electron 

distribution changes less rapidly with R in the vicinity of 

Re. Eq. (3) accomodates the relatively abrupt repulsion 

of weakly bound species through the interrelation of p 

to ~ and the derivatives of <T> and <V> noted above. 

It is also possible, given the relationship of p to 

derivatives of W{H), to express p from first principles. 

Let W(r,R) be the exact Born-Oppenheimer wavefunction 

for the diatomic, given as a function of all electron 

coordinates, r, and, parametrically 1 as -a function of 

internuclear distance R. First, from the Hellmann-Feynman 

9 theorem , the internuclear force is given by 

dW(R) 

dR 
= -Jw*~~ wdT = -<av;aR>. ( 6) 

Clinton10 has derived an expression for ke from the virial 

theorem definition of <V>; 

k R = c~-~Vdj- . e e aR R e 

From the differentiation of Eq. {6), one has 
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From further differentiation of <V>, one has 

When this expression is evaluated at R and combined with e 

the expression for (d
2

<v >/dR
2

)R g1ven above, one finds 
e 

Thus p can be evaluated from first principles. This ex-

pression is also more transparent than the perturbation 

expression for p given by Thakkar: 1 

Finally, we note that this expression can be used 

to find the spectroscopic vibration-rotation interaction 
;') 

constant# ae' (or more precisely, the Dunham energy term, 

Y
11

). This constant leads the expansion of the rotational 

constant as a function of vibrational quantum number, Vv via 

B = B - a (v + ~) . 
v e e 

From the spectroscopic definition 3 of p, 

p = 
ex w e e 

2 
6Be 



and the familiar expressions for we and Be in terms of 

ke' Re' ~~ and molecular masses, one can evaluate ae from 

first principles. 

One is used to expressing the anharmonic shape of 

a potential function through the first vibrational 

correction wexe (or Y20 ). It is important to remember that 

ae not only measures the same effect, but it does so in 

a more direct fashion. The constant ae describes the 

lengthening (if a >0) of the average internuclear separation e 

as the vibrational quantum number is increased~ 2 

In conclusion, we apply the results of this analysis to 

a qualitative view of an aspect of weak bonding which is, 

at first sight, somewhat unexpected and puzzling. Given 

the periodic variation of polarizabilities throughout the 

Periodic Table, one might expect the binding energies of 

the homologous series Ne 2 , NeAr, NeKr, and NeXe to increase 

uniformly throughout the series. Instead, the binding 

energy increases13 from Ne 2 to NeAr, but then saturates 

at a virtually constant value from NeAr to NeXe. Similarly, 

the greater polarizability of Na when compared to Ar might 

lead one to predict NaAr to be more strongly bound than Ar 2 ~ 
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In fact, NaAr exhibits 40% of the binding energy of Ar
2

. 

Since any of these binding energies is a trivial 

fraction of the total molecular energy, only very slight 

and perhaps subtle changes to the separated atom 

wavefunctions occur near Re. Consider first the Ne 

containing rare gas diatomics. From the measured13 

W(R) 's, one deduces p values ranging from 5.3 for Ne 2 

to 5.6, 6.0, and 6.9 for NeAr, NeKr, and NeXe, 

respectively. This uniform increase in p implies a uni-

form (and more pronounced) increase in the rates of change 

of <T> and <V> near R as Ne is paired with successively e 

larger atoms. The smaller (less polarizable) Ne finds 

its electrons confined to an even smaller region of 

space at the onset of repulsive overlap, and the degree 

of confinement will be greater the larger the other atom 

happens to be. This will raise the total electron kinetic 

energy at a rate governed by the identity of the less 

polarizable atom# in analogy with shortening the length of 

the box containing a particle in an already short box. 

Similar arguments would seem to apply to the alkali 

metal-rare gas diatomics. The large bond lengths found 

for these species (i.e., Re = 5 ~for NaAr) imply a repulsive 

interaction at a distance governed by the spatially diffuse 

outer s electron of the alkali. However, p for NaAr is
3 
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~4.3, indicating that the single s electron is, as 

expected, less effective in raising the kinetic energy 

of the outer Ar electrons. The near equality of the 

NeAr-NeXe binding energies and the "anomalously small" 

binding of NaAr should be regarded as somewhat fortuitous 

outcomes. But the variations in the detailed shapes of 

W(R) near R can be understood in terms of the effects of e 

electron density variations in controlling the repulsive 

part of <T(R)>. 

To summarize, the availability of accurate energy 

functions for many weakly bound diatomics permits the analy-

sis of weak bonding in terms of the physical consequences 

of the virial theorem and the detailed shape of W(R) functions 

near R . The relatively more abrupt onset of repulsion in 
e 

weak bonds (compared to true chemical bonds) is traced to 

the abrupt end of long range attractions and consequent rapid 

increase in the total kinetic energy of the diatomic's 

electrons. Periodic variations in non-bonding electron 

distributions alter the rate of rise of this repulsion 

in a way which can be measured by the parameters describing 

the shape of the total energy function near R . These e 

parameters can be directly related to expectation values 

of the molecular Hamiltonian or to various derivatives of 

them. 
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Figure Captions 

Figure 1. 

Figure 2. 
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The total energy, w, the average electron 

kinetic energy, T, and the average diatomic 

potential energy, V, of H2 , measured in 

units of the H2 bond energy~ plotted as a 

function of internuclear distance, measured 

in units of the equilibrium H
2 

bond length. 

Data from Ref. 2. 

As Fig. 1, but for Ar 2 • Data from Ref. 4. 
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